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I. INTRODUCTION

A yawsonde is a device developed to give a continuous record of
the angle between a shell’s axis of rotation and the line of sight to
the sunl-6. It consists of two light sensors located behind two
inclined slits on the shell body and a telemetry unit. The instant
each sensor sees the sun, a discrete pulse is transmitted to a ground
station and recorded versus time. The resulting pulse train can then
be analyzed to yield sun angles to an accuracy of O.1° and the spin
rate. The usual reduction, however, assumes the sun angle to be con-
stant for a single revolution of the shell. If the shell is perform-
ing large high-frequency angular motion, this assumption can be invalid
and erroneous data can be produced. It is the purpose of this report
to develop a valid data analysis system to handle yawsonde data without
assuming the constancy of the sun angle during a single revolution of
the shell.

II. CONSTANT SUN ANGLE ANALYSIS

We will make use of a solar fixed-plane coordinate system which
can be described in terms of three unit vectors. 31 is along the

missile’s axis, ~3s is in the plane determined by the sun and the

1.

2.

3.

4.

5.

6.

I. Amery, H. Henning, K. L@tie, and E. Wlatnig, “A Telemetry
System for the Measurement of the Yau of a Projectile Throughout
the MW”OP Part of Its Trajectory (U),” RARDE Report 1/65, March
1965. AD 359250. (ConfidentialReport)

W. R. Hase’Ztine,lfYming Motion of 5.0!!MK 41 pro3”ectileStudied

by Means ofYau Sondes,” lVavaZWeapons Center Report NWC TP 4779,
August 1.169. AD 862065.

W. H. Merrnagen,“Measurementsof the Dynamical Behavior of Pro-
jectiles over Long Flight Paths,’fJournal of Spacecraft and
Rockets, Vol. 8, April 1971, pp. 380-385. (See also BRLMR 2079.
AD 717002)

W. H. CZay, “A Precision Yamsonde Calibration Technique,“ BRL MR
2263, January 1973. AD 758158.

R. H. Whyte and W. H. Mermagen, “A Method for Obtaining Ae~ody-
namic Coefficients from Yausonde and Radar Data,” JournaZ of
Spacecraft and Rockets, VOZ. 10, June 1973, pp. 384-388. (See
aZso BRL MR 2280. AD 759482)

W. H. Mermagen and W. H. CZay, “The Design of a Second Generation
Yausonde,” BRLMR 2368, Apriz 1974. AD 780064.
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missile’s axis and oints toward the sun’s side of the missile’s axis,
$while ?2s is 33s X 1.

Each sun sensor unit emits a pulse at the instant that the sun is
In the plane of its inclined slit. Let Ya be the inclination of the first

slit with respect to the missile’s axis and let +a be the missile’s

roll angle with respect to the vector l!2swhen the line-of-sightfrom

the first sensor to the sun lies in the ~ ~~ ~~ plane. Then the vector
normal to the plane of the first sun sensor is

Ra = i$lsin ya + [ ~2s cos ($-~a) + $3s sin ($-$a) ] cos ya (1)

where $ is the roll angle of the missile. The sun line-of-sightcan
be specified by the unit vector

+
s = 31 cos o + i!3ssin u (2)

where u is the angle between the sun’s rays and the missile’s axis.
When the sun is in the plane of the first sensor

fia.2=0 (3)

or

sin (O-$a) = - tan Y ctn oa
(4)

A similar relation applies to the second sun sensor:

(5)sin ($-$b) = - tan yb ctn u

We now consider a triple of time pulses consisting of two sight-
ings of the sun by

sensor at t = tz.

the relations:

We now assume that

the first sensor at-t = t1,t3 and one by the second

The pairs of $i, ui’s for these three times satisfy

sin ($i-$a) = - tan Ya ctn ui i = 1,3 (6)

(7)sin ($~-+b) = - tan yb ctn U2

U1 = 02 = U3 = u and that ~ is a constant. Then

sin (+l-$a) = sin (413-@a) (8)

8



so that*

or

Now

(9)

(lo)

$3 - $1 = 2?l

~=z~
ts-tl

‘$2- $1 = ? (t2,-t~)

= 2T (tz-t~) (ts-t~)-l

Let

d=42-$1-(@b-+a)

Then

sin (42 - $b) = sin (@l - @a + d)

= sin ($1 - @a) cos 6 + sin d cos (O1 - $a) (13)

Equations (6-7)can now be substituted in Equation (13) and the result
simplified to yield

tan o = [tan2 ya - 2 tan ya tan yb cos 6 + tan2 yb]% (sin 6)-1

(11)

(12)

This equation gives the sun angle in terms of the three

t3) and three parameters of the sensors (Ya, Yb> $b-@a)

for idealized sun sensors, Actual sun sensors will not
Equations (4-5) but roll angles for each sun sensor can
functions of the sun angle4.

$ = fa (ui) + (i-1) IT i = 1,i

$2 = fb (u~) + 27T2

(14)

times,(tl, t2,

and is valid

exactly satisfy
be measured as

3 (15)

(16)

* Since the sun sensor plane is really a half plane, the root

$3 - l$~=7T is not appropriate.

9



where ~ is an integer selected so that

Once again we assume that U1 = a2 = U3
.

= u and that $ is a constant.

Equations (10-11] are still valid and

‘$2 - ‘$1= fb(u) - fa(u) + 2nj ~ g(u)

or

0= g‘1 ($2-’$1)

(17)

(18)

where $2-$1 is given by Equation (11).

III. VARYING SUN ANGLE ANALYSIS

We assume that the sun angle is a linear function of time and that
the roll angle is a quadratic function of time and hence we need five
successive sightings of the sun to determine the five parameters:

L7. = ;3 (ti-ts) + U3
1

i = 1,2,3,4,S (19)

$i = ~3 (t.i-t2)2/2+ 43 (ti-tz) + $3 (20)

If three of the sightings are by the first sensor and two by the second,
then

$i = fa (CJi)+ (i-l)m i = 1,3,5

$i = fb (ui) + 21T~+ (i-2)m i = 2,4

(21)

(22)

... .
The five parameters (U3, u3, $3, +3, $3) ,Gm be obtained from the five

times (tl, t2, ts, t4, t5) by substituting Equations (19-20) in Equations

(21-22) and solving the resulting nonlinear algebraic equations by an
iterativ~ differential correction technique. The first set of values
of (cr3,u3), i.e. (U31, 631) can be obtained by using the constant-sun-

angle solutions for (tl, tz, t3) and (t3, t4, t5]. Since these

7. P. R. Bevington, LkztaReduction and Error Analysis for the
Phydcal Sc&?nce8, McGPa@Hill, Neu York, 1969.
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approximately correspond to the sun angles for t2 and tq, we will
denote them by u2,u4.

.. 031 = (UZ + u4)/2 (23)

;31 = (U4 - u2)/(tq - tz) (24)

Equations (19-20) for the (j-1) iteration can be written in the form:

;3j (ti - t3)2/2 + i~j (ti - ‘3) + @CJj

(a fK (Gi.-l)
= fK (u

ij-l) + aus‘)
(031 - U3j_~)

(25)

where

K = a, m = i-1 for i = 1,3,5

K=b,m= 2(~-1) + i for i = 2,4

Equations (25) are linear in the unknowns (u ■

..

3j’ ‘3jJ ~sj~ @3j) andu3j>

can be

A

can be
by:

easily solved; usually only three or f;ur i~erat~ons are r~quired.

second version of a varying sun angle analysis using five times

used for constant ~. In this case, Equations (19-20) are replaced

.. .
a.
1

= 03 (ti - (26)‘3)2/2 + ‘3 (ti - ‘3) + ‘3

$.j, = $3 (ti - ts) + 03

Equations similar to Equations (25) can be easily
variant.

Iv. EFFECT OF MOVING COORDINATE

$ is the roll angle measured with respect to

measured in this solar fixed-plane coordinate system and is not necessarily
equal to the roll rate, p, measured in an inertia coordinate system since
the solar coordinate system can itself have a non-zero roll rate.

(27)

derived for this

SYSTEM

+
‘2s” 4 is a roll rate

11



For our inertia system, we will use an earth-fixed coordinate
system Xl, X2, X3, so aligned that the X3 axis is vertical and the
trajectory is initially in the X1-X3 plane. Since the actual trajectory
can be reasonably well approximatedby a planar trajectory, we will
approximate the velocity vector along the trajectory by (V cos eT, O,
V sin eT).

In the appendix, the roll component (ul~) of the angular velocity

of the sun fixed-plane coordinates is computed in terms of the hori-
zontal and vertical co

T
orientsof the complex yaw in the aeroballistic

fixed-plane coordinates :

‘1s = (bl ;H + bz :V) cos OT

. ● ●
✎ ✎ ✎ ✌✘✎ ✚✎

☞ b3 ;HEH + bb CVCV + b5 &H~v + b6 ~H&V (28)

where
A A

i=
~H+i~v= “sin 13+ i cos 6 sin a

AA
a, B are the angles of attack and sideslip

‘T
is the angle between the sun vector
and the tangent to the trajectory;

b ‘s are defined in Table 1.
i

I
TABLE 1. COEFFICIENTS IN EQUATIONS (28) AND (A17)

bl = (S3 cos eT - sl sin eT) CSC2 u
T

b2 = -S2 CSC2 UT

b3 = b2 [2 cos UT tan eT - (1 + COS2 CJT)bl]

b4 = b2 [2 cos UT tan f3T+ (1 + COS2 UT) bl]

b5 = Cotz u
T

- bl cos UT tan eT - b22 (1 + COS2 UT)

b6 = -Cotz a
T
- bl COS UT tan 6T + b12 (1 + COS2 UT)

8. C. H. Muqhg, ‘tFra Flight Motion of Sy?m?wtticlfissi~est~,
BRL Report 1216, July 1963, AD 442757.
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The variation of the complex yaw can be described by the usual
epicycle

i$l i$2
i =Kle +K2e

The presence of derivatives in all terms of Equations (28) suggests
that the high frequency mode is the more important mode in Equation
(29). If we neglect the low frequency mode-
becomes

+ [(b4 - b3) sin $1 cos $1 + b5

(K2=O), Equation (28)

(29)

(30)

Since ~ is the difference between the projectile spin and the
coordinate system spin:

4=P-~ls, (31)

it will be a periodic function with frequency ~1 except when UT = n/2.
For this special case where the sun is perpendicular to the projectile,
the frequency will be 2$1. The average value of $ is, however, quite
close to the projectile spin:

iav=P + (b5 - b6) ?1 K12/2 (32)

v. DISCUSSION

In Figure 1, the sun angle complement (un = T/2 - u) and ~ as
obtained from the three-time-measurements,constant-sun-anglereduction
are plotted for an eight-inch projectile. These data are then reduced
by the fivetime-measurements analysis of this report and plotted in
Figyre 2. The sun angles are changed by very little but the oscillations
in ~ are r$duced by 50%. The remainder is clearly periodic with
frequency $1. Later i? the flight, the sun angle went through n/2;
Figure 3 shows u~ and $ for this portion of the trajectory. We note

the ~ oscillations are much smaller, with frequency 2~1.

13



It is interesting to note that the need for the varying u data
reduction can be eliminated by a modified yawsonde. If the first sun
sensor is oriented so that ya = O, that sensor is insensitive to sun

ang1e (see Equation (4)), so that

fa(u) + o (33)

This sensor directly measures ~. The second sensor, then, yields a

‘2
at t=t~ from the standard three-time-measurementsprocedure.
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LIST OF SYMBOLS

coefficients in the expression for u
1s’

Equation 28; defined in Table 1

unit vector along the missile’s axis

unit vectors in the aeroballistic fixed-
plane system, Equations (A4-A5)

unit vectors in the solar fixed-plane
system, Equations (A7-A8)

sun angle functions obtained from roll
angle versus sun angle data provided
by sun sensor (a) or (b)

fa or fb, Equation (25)

a function relating the difference in
successive roll angle values to the sun
angle, Equation (17)

the inverse of function g, Equation (18)

magnitude of the high (1) or low (2)
frequency yaw mode, Equation (29)

an integer in Equations (16, 22, 25)
providing the proper multiple of 21T

i-1 i= 1, 3, 5

2(1 - l)+i i=2,4

vector normal to the plane of sun sensor (a)

direction cosines of the missilels axis in
the earth-fixed Xl, X2, X3 system
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P

+
s

Sss
1’ 2’ 3

t

t
i

v

xl, X2, X3

A

a

&

Tl, r12,n
3

OT

roll rate in the earth-fixed X~, X2, X3
system

the unit vector from the missile to the sun

components of s in the earth-fixed Xl, X2, X3
system

time

time at which a sensor sees the sun, i = 1, 2,
3 ...

magnitude of the velocity vector

velocity vector

axes in an earth-fixed coordinate system:
X3 is vertical and the trajectory-is

initially in the Xl - X3 plane

angle of attack

angle of sideslip

the inclination of slit (a) or (b) with
respect to the missile’s axis

4’2 - 41 - (@b - +a)

+
components of the yaw vector (~1 - v/v) in

the earth-fixed Xl, X2, X3 system

the angle between the missile~s axis and
the tangent to the trajectory
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iH

u

u.
1

a.
lk

a
n

‘T

LIST OF SYMBOLS (CONTINUED)

tH+i~V, the complex yaw in the aero-

ballistic fixed-plane system

sin 8, the horizontal component of ~

cos p sin ;, the vertical

the sun angle: the angle

component of ~

between the sun
vector and the missile’s axis

u(ti), i=l, 2, 3, ...

the value of Ui computed at the k-th

iteration of the data analysis

IT—-
2U’ the sun angle complement

the angle between the sun vector and the
tangent to the trajectory

the missilets roll angle in the solar fixed-
plane system, that is, with respect to the

vector Z
2s

the value of $ when the line-of-sight from
sun ~e$sor (a) or (b) to the sun lies in
the e e1 s~ plane

(a) $(ti) , i = 1, 2, 3 .OO Equations (6-27)

(b) the orientation angle of the high- (i = 1)
or low- (i = 2) frequency yaw mode,
Equation (29, on)
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(“)

(“) , ( )a

( )~

LIST OF SYMBOLS (CONTINUED)

the value of ~(ti) computed at the k-th

iteration of the data analysis

roll rate in the solar fixed-plane system

roll component of the angular velocity of
the aeroballistic fixed-plane system

roll component of the angular velocity of
the solar fixed-plane system

derivative with respect to time

b

value in the aeroballistic fixed-plane sYstem

value in the solar fixed-plane system
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APPENDIX A. DERIVATION OF EQUATION (28)

Our earth-fixed coordinate system X , X2, X3 will be so oriented
that the Xl 1- X3 plane is the vertical p ane containing the initial
velocity vector. If we make the very reasonable approximationthat
the velocity vector stays in this plane, it can be written in the form

if= V (cos 8T, O, sin 6T). (Al)

The unit vector along the missile’s axis then takes the form

2
‘1 + n22 + n32 = 1

(A2)

(A3)

where the nj’s become zero for zero-amplitudeyawing motion.

We will be using two coordinate systems which use two different
fixed planes:

1. The usual aeroballistic fixed plane which contains the
missile’s axis

2. A SWl

sun’vectorand

The other
system are

+

and the vertical vector;

fixed plane which contains the missile’s axis and the
is the reference plane for the yaw sonde’s $.

two unit vectors for the aeroballistic fixed-plane

(0,0,1) X:1

‘2a = Cos e =

(-r12, Cos eT + n~, 0)
(A4)

Cos 0

+
el X [(0,0,1) Xzl] (0,0,1) - (sin eT + n3) ZI+ =

‘3a = Cos e Cos e

(A5)

(A6)Cos e = [COS2 eT + 2T’4 Cos eT + ?lIz+ n2@
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Similarly, the other two units vectors for the sun fixed-plane system
are:

+
+ Sx:l

=-
‘2s sln u

(A7)

+:1 x (: x :1) s - (Cos a) :1+
‘3s = sin a = sin u (A8)

where

+
s = (s1, s2, s3) is the unit vector pointing to the sun,

+
Cos u = s “ :1,

and u is in the first quadrant when the sun’s rays illuminate the
missile’s nose and is in the second quadrant when the sun’s rays
illuminate the missile’s base.

The horizontal and vertical components of the complex yaw in the
aeroballistic fixed-plane coordinates can be computed from their
definitions:

+
‘2a

● v -112 Cos e
iH= ~ = T

Cos e
(A9)

+
‘3a

“Giv= ~
’11sin f3 Cos e - r13(1 + sin2 ‘q.+ ~~ Cos ‘T - ~3 ‘in ‘T)T T= (A1O)

Cos eT

where

. .
and 6, a are the angles of attack and sideslip respectively. A
quadratic approximation for nl and a linear approximation for cos 13
can be obtained from Equations (A3, A6, A9-10).
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T122COS2 eT + l-l2
3

~1 = -q3 tan (3-
2 Cos3 eT

Cos e
T

r13sin OT
—=1+
Cos e COS2 eT

.A

~3
= -iv Cos eT + (Ev 2-~H2)(sin 0T)/2

(All)

(A12)

(A13)

(A14)

The roll component of the angular velocity of the sun fixed-plane
coordinates can now be computed in terms of the n.’s:

J

(bl=-e
1s 2s “ ‘3s

where

+ ~3 (s2 Cos ‘T + ‘2 ‘1 - S1 r12)

Cos o =;”;
1

= Cos 0 + s
T ~ nl + S2 nz + S3 n3

(A15)

(A16)

Cos u = s
T 1 Cos ‘T+ ‘3 ‘In ‘T
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We can now use Equ~tions {Ail-13, A16) to express Uls as a
quadratic expansion in EH and gV

.

‘1s
= (bl ~H+ b2 ~V) COS UT

where the bj’s are defined in Table 1.

Equation (A17) is precisely Equation (28) of the t’ext. It is
interesting to note that for the special case of the sun directly
overhead, the two fixed-plane coordinate systems are the same. For
this case,

‘1 = ‘2 =
o

‘3 =
1

(A18)

%
= Tr/2- aT.

The bj’s of Table 1 become

bl = sec 0 “ b2 = b3 =bq = b5 = O; b6 = 1
T’

(A19)

and

Equation (A20) for 6T = O is equivalent to Equation (4.3) on page 150
of Reference 8.
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